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The upper and lower limits of the central box are defined using either quartiles or hinges.  These 
definitions are clarified below.  Then the influence of each definition on the position of the 
whiskers is demonstrated.  Definitions used by commercial software packages are listed, including 
one non-conventional form called a "box graph". 

Quartiles 
Quartiles are the 25th, 50th and 75th percentiles of a data set, as defined in chapter 1.  Consider a 
data set Xi, i=1,...n.  Computation of percentiles follows the equation 
 

 

pj = X(n+1)•j 
 

where n is the sample size of Xi, 
  j is the fraction of data less than or equal to the percentile value (for the  
  3 quartiles, j= .25, .50, and .75). 
Non-integer values of (n+1)•j imply linear interpolation between adjacent values of X. 
Computation of quartiles for two small example data sets is illustrated in Table 1. 

Hinges 
Tukey (1977) used values for the ends of the box which, along with the median, divided the data 
into four equal parts.  These "fourths" or "hinges" are defined as: 

Lower hinge hL = median of all observations less than or equal to the sample median. 
Upper hinge hU = median of all observations equal to or greater than the overall sample 

median. 

They may also be defined as: 

Lower hinge hL =    XL, where L = 
 integer [ (n+3)/2 ]

2  ,  and 
 

Upper hinge hU =    XU, where U = (n+1) − L. 

where "integer [  ]" is the integer portion of the number in brackets.  For example, integer [ 5.7 ] = 
5.  Again, non-integer values of L and U imply interpolation.  With hinges, however, this will always 

Appendix A
Construction of Boxplots
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be halfway between adjacent data points.  Therefore, hinges are always either data values 
themselves, or averages of two data points, and so are easier to compute by hand than are 
percentiles.  Hinges will generally be similar to quartiles for large (n> 30) sample sizes.  For smaller 
data sets, differences will be more apparent.  For example, when n=12 the lower hinge is halfway 
between the 3rd and 4th data points, while the lower quartile is one-quarter of the way between the 
two points (see Table 1) . Both measures split the data into one-fourth below and three fourths 
above their value.  Either are acceptable for use in boxplots. 

 
Table A1 

A.   For the following data Xi of sample size n=11: 
  2   3   5   45   46   47   48   50   90   151   208 
 
 p.25 = lower quartile = X(n+1)•.25  =X3   =  5. 
 p.75 = upper quartile = X(n+1)•.75  = X9   = 90. 
 p.50 = median    = X(n+1)•.50  = X6    = 47. 
 hl = lower hinge =  median [2  3  5  45  46  47]    = 25. 
 hu = upper hinge =  median [47  48  50  90  151  208]  = 70. 
 
B.   For sample size n=12, and data Xi, i=1,...n  equal to: 
  2   3   5   45   46   47   48   49   50   90   151   208   
 
 p.25 =  lower quartile = X(n+1)•.25 = X3.25 =  X3 + 0.25•(X4 − X3) = 15. 
 p.75 = upper quartile = X(n+1)•.75 = X9.75 =  X9 + 0.75•(X10 − X9) = 80. 
 p.50 = median = X(n+1)•.50  =  X6.5  =  X6 + 0.50•(X7 − X6) = 47.5. 
 hl = lower hinge =  median [2  3  5  45  46  47]   = 25. 
 hu = upper hinge =  median [48  49  50  90  151  208]  = 70. 

using hinges

using quartiles

using hinges

using quartiles

n =11 data set

n =12 data set  
Figure A1.   Boxplots for the Table A1 data 
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Figure A1  shows standard boxplots for the Table 1 data using both percentiles and hinges.  Data in 
Table 1 were designed to maximize differences between the two measures.  Real data, and larger 
sample sizes, will evidence much smaller differences.  Note that the definitions of the box 
boundaries directly affect whisker lengths, and also determines which data are plotted as "outside" 
values. 

It would be ideal if all software used the same conventions for drawing boxplots.  However, that 
has not happened.  Software written by developers who stick to the original definitions prefer 
hinges;  those who want box boundaries to agree with tabled percentiles use quartiles.  The Table 1 
data can be used to determine which convention is used to produce boxplots.   

Non-conventional definitions 
Other statistical software use another (non-conventional) value for the box boundaries (Frigge and 
others, 1989).  They use the next highest data value for the lower box boundary whenever n/4 is 
not an integer.  This avoids all interpolation.  Note that n, not n+1, is used. 

StatView uses a percentile-type boxplot similar to the truncated boxplot, except that the upper and 
lower 10 percent of data are plotted as individual points.  The weakness of this scheme is that 10 
percent of the data will always be plotted individually at each end of the plot, and so it is less 
effective for defining and emphasizing unusual values.  Also important is that StatView uses yet 
another definition for the box boundaries, X(n+2)•j , in calculating the quartiles.  This non-
conventional boxplot was called a "box graph" by Cleveland (1985). 

Therefore some statistical software will produce boxes differing from conventional boxplots, 
particularly for small data sets. 
 
Boxplots for Censored Data 
Data sets whose values include some observations known only to be below (or above) a limit or 
threshold can also be effectively displayed by boxplots.  First set all values below the threshold to 
some value less than (not equal to) the reporting limit.  The actual value is not important, and could 
be 0, one-half the reporting limit, etc.  Produce the boxplot.  Then draw a line across the graph at 
the value of the threshold, and erase all lines below this value from the graph. 
 
This procedure was used for data in figure A2.  If less than 25 percent of the data are below the 
threshold, this procedure will affect at most only the lower whisker (as in the Hoover Dam through 
Morelos Dam boxplots).  If between 25 and 75 percent are below the threshold, the box will be 
partially hidden below the threshold (as in the CO-UT Line and Cisco boxes).  If more than 75 
percent of the data are below the threshold, part of the upper whisker and outside values will be 
visible above the threshold, as in the Lees Ferry box.  In each case, these boxplots accurately and 
fairly illustrate both the distribution of data above the threshold, and the percentage of data below 
the threshold. 
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Figure A2.   Dissolved solids concentrations along the Colorado River, artificially censored at a 

threshold of 600 mg/L. 
 
A second alternative for boxplots of censored data is to estimate the percentiles falling below the 
threshold, and drawing dashed portions of the box below the threshold using these estimates.  
Helsel and Cohn (1988) have compared methods for estimating these percentiles.  When multiple 
thresholds occur, such as thresholds which have changed over time or between laboratories, a solid 
line can be drawn across the plot at the highest threshold.  Portions of the boxes above the highest 
threshold will be correct as long as each censored observation is assigned some value below its 
threshold.  Quartiles falling below the highest threshold should be determined by using the 
methods recommended by Helsel and Cohn (1988).  All lines below the highest threshold are only 
estimates, and should be drawn as dashed lines on the plot.   
 
Displaying confidence intervals 
As an aid for displaying whether two groups of data have different medians, confidence intervals 
for the median as defined in chapter 3 can be added to boxplots.  When boxplots are placed side by 
side, their medians are significantly different if the confidence intervals do not overlap.  Three 
methods of displaying these intervals are shown in figure A3.  In the first method (A), the box is 
"notched" at both upper and lower limits, making the box narrower for all values within the 
interval.  In the second (B), parentheses are drawn within the box at each limit.  Shading is used in 
(C) to illustrate interval width.  If displaying differences in medians is not of primary interest, these 
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methods add visual confusion to boxplots and are probably best avoided.  Confusion is 
compounded when the interval width falls beyond the 25th or 75th percentiles.  Of the three, 
shading seems the easiest to visualize and least confusing. 
 

 
 A B C 

Figure A3.   Methods for displaying confidence interval of median using a boxplot.  
A.  Notched boxplots    B.  Parentheses    C.  Shaded boxplot 

 



 
 
 Table B1  Cunnane plotting positions for n = 1 to 20 

 Table B2  Normal quantiles for Cunnane plotting positions of Table B1 

 Table B3 Critical values for the PPCC test for normality 

 Table B4 Quantiles (p-values) for the rank-sum test 

 Table B5 Quantiles (p-values) for the sign test 

 Table B6 Critical test statistic values for the signed-rank test 

 Table B7 Critical test statistic values for the Friedman test 

 Table B8 Quantiles (p-values) for Kendall's tau (τ) 
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Table B1.  Cunnane plotting positions for sample sizes n = 1 to 20 
  i  

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

  N= 5 
.12 .31 .50 .69 .88 
 
  N= 6 
.10 .26 .42 .58 .74 .90 
 
  N= 7 
.08 .22 .36 .50 .64 .78 .92 
 
  N= 8 
.07 .20 .32 .44 .56 .68 .80 .93 
 
  N= 9  
.07 .17 .28 .39 .50 .61 .72 .83 .93 
 
  N= 10 
.06 .16 .25 .35 .45 .55 .65 .75 .84 .94 
 
  N= 11 
.05 .14 .23 .32 .41 .50 .59 .68 .77 .86 .95 
 
  N= 12 
.05 .13 .21 .30 .38 .46 .54 .62 .70 .79 .87 .95 
 
  N= 13 
.05 .12 .20 .27 .35 .42 .50 .58 .65 .73 .80 .88 .95 
 
  N= 14 
.04 .11 .18 .25 .32 .39 .46 .54 .61 .68 .75 .82 .89 .96 
 
  N= 15 
.04 .11 .17 .24 .30 .37 .43 .50 .57 .63 .70 .76 .83 .89 .96 
 
  N= 16 
.04 .10 .16 .22 .28 .35 .41 .47 .53 .59 .65 .72 .78 .84 .90 .96 
 
  N= 17 
.03 .09 .15 .21 .27 .33 .38 .44 .50 .56 .62 .67 .73 .79 .85 .91 .97 
 
  N= 18 
.03 .09 .14 .20 .25 .31 .36 .42 .47 .53 .58 .64 .69 .75 .80 .86 .91 .97 
 
  N- 19 
.03 .08 .14 .19 .24 .29 .34 .40 .45 .50 .55 .60 .66 .71 .76 .81 .86 .92 .97 
 
  N= 20 
.03 .08 .13 .18 .23 .28 .33 .38 .43 .48 .52 .57 .62 .67 .72 .77 .82 .87 .92 .97 
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Table B2.   Upper tail normal quantiles for the plotting positions of Table B1 
(for lower tail quantiles, multiply all nonzero quantiles by  −1) 

 N=  5 
0.000 0.502 1.198 

 N=  6 
0.203 0.649 1.300 

 N=  7 
0.000 0.355 0.765 1.383 

 N=  8 
0.153 0.475 0.859 1.453 

 N=  9 
0.000 0.276 0.575 0.939 1.513 

 N=  10 
0.123 0.377 0.659 1.007 1.565 

 N=  11 
0.000 0.225 0.463 0.732 1.067 1.611 

 N=  12 
0.103 0.313 0.538 0.796 1.121 1.653 

 N=  13 
0.000 0.191 0.389 0.604 0.852 1.169 1.691 

 N=  14 
0.088 0.267 0.456 0.663 0.904 1.212 1.725 

 N=  15 
0.000 0.165 0.336 0.517 0.716 0.950 1.252 1.757 

 N=  16 
0.077 0.234 0.397 0.571 0.765 0.992 1.289 1.787 

 N=  17 
0.000 0.146 0.295 0.452 0.620 0.809 1.031 1.323 1.814 

 N=  18 
0.069 0.208 0.351 0.502 0.666 0.849 1.067 1.354 1.839 

 N=  19 
0.000 0.131 0.264 0.402 0.548 0.707 0.887 1.101 1.383 1.864 

 N=  20 
0.062 0.187 0.315 0.449 0.591 0.746 0.922 1.133 1.411 1.886 
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Table B3.   Critical r* values for the probability plot correlation coefficient test of 
normality  (from Looney and Gulledge, 1985a) 

 American Statistical Association.  Used with permission. 
 

[reject H0: data are normal  when PPCC r < r* ] 
 

α-level 
  n   .005  .010  .025  .050  .100  .250 
  3   .867  .869  .872  .879  .891  .924 
  4  .813  .824  .846  .868  .894  .931 
  5  .807  .826  .856  .880  .903  .934 
  6 .820  .838  .866  .888  .910  .939 
  7 .828  .850  .877  .898  .918  .944 
  8 .840  .861  .887  .906  .924  .948 
  9 .854  .871  .894  .912  .930  .952 
 10 .862  .879  .901  .918  .934  .954 
 11 .870  .886  .907  .923  .938  .957 
 12 .876  .892  .912  .928  .942  .960 
 13 .885  .899  .918  .932  .945  .962 
 14 .890  .905  .923  .935  .948  .964 
 15 .896  .910  .927  .939  .951  .965 
 16 .899  .913  .929  .941  .953  .967 
 17 .905  .917  .932  .944  .954  .968 
 18 .908  .920  .935  .946  .957  .970 
 19 .914  .924  .938  .949  .958  .971 
 20 .916  .926  .940  .951  .960  .972 
 21 .918  .930  .943  .952  .961  .973 
 22 .923  .933  .945  .954  .963  .974 
 23 .925  .935  .947  .956  .964  .975 
 24 .927  .937  .949  .957  .965  .976 
 25 .929  .939  .951  .959  .966  .976 
 26 .932  .941  .952  .960  .967  .977 
 27 .934  .943  .953  .961  .968  .978 
 28 .936  .944  .955  .962  .969  .978 
 29 .939  .946  .956  .963  .970  .979 
 30 .939  .947  .957  .964  .971  .979 
 31 .942  .950  .958  .965  .972  .980 
 32 .943  .950  .959  .966  .972  .980 
 33 .944  .951  .961  .967  .973  .981 
 34 .946  .953  .962  .968  .974  .981 
 35 .947  .954  .962  .969  .974  .982 
 36 .948  .955  .963  .969  .975  .982 
 37 .950  .956  .964  .970  .976  .983 
 38 .951  .957  .965  .971  .976  .983 
 39 .951  .958  .966  .971  .977  .983 
 40 .953  .959  .966  .972  .977  .984 
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Table B3.   Cont.  

 
 

α-level 
  n   .005 .010 .025 .050 .100 .250 
 41 .953 .960 .967 .973 .977 .984 
 42 .954 .961 .968 .973 .978 .984 
 43 .956 .961 .968 .974 .978 .984 
 44 .957 .962 .969 .974 .979 .985 
 45 .957 .963 .969 .974 .979 .985 
 46 .958 .963 .970 .975 .980 .985 
 47 .959 .965 .971 .976 .980 .986 
 48 .959 .965 .971 .976 .980 .986 
 49 .961 .966 .972 .976 .981 .986 
 50 .961 .966 .972 .977 .981 .986 
 55 .965 .969 .974 .979 .982 .987 
 60 .967 .971 .976 .980 .984 .988 
 65 .969 .973 .978 .981 .985 .989 
 70 .971 .975 .979 .983 .986 .990 
 75 .973 .976 .981 .984 .987 .990 
 80 .975 .978 .982 .985 .987 .991 
 85 .976 .979 .983 .985 .988 .991 
 90 .977 .980 .984 .986 .988 .992 
 95 .979 .981 .984 .987 .989 .992 
100 .979 .982 .985 .987 .989 .992 
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Table B4.   Quantiles (p-values) for the rank-sum test statistic Wrs  
p = Prob [Wrs ≥ x] = Prob [Wrs ≤ x*] 

 

n [smaller sample size] = 3 
 m=4 m=5 m=6 m=7 m=8 m=9 m=10 
 x p x* x p  x* x p x* x p x* x p x* x p x* x p x* 
 16 .114 8 18 .125 9 20 .131 10 22 .133 11 24 .139 12 27 .105 12 29 .108 13 
 17 .057 7 19 .071 8 21 .083 9 23 .092 10 25 .097 11 28 .073 11 30 .080 12 
 18 .029 6 20 .036 7 22 .048 8 24 .058 9 26 .067 10 29 .050 10 31 .056 11 
 19 0 5 21 .018 6 23 .024 7 25 .033 8 27 .042 9 30 .032 9 32 .038 10 
    22 0 5 24 .012 6 26 .017 7 28 .024 8 31 .018 8 33 .024 9 
       25 0 5 27 .008 6 29 .012 7 32 .009 7 34 .014 8 
          28 0 5 30 .006 6 33 .005 6 35 .007 7 

n [smaller sample size] = 4 
 m=4 m=5 m=6 m=7 m=8 m=9 m=10 
 x p x* x p  x* x p x* x p x* x p x* x p x* x p x* 
 22 .171 14 25 .143 15 28 .129 16 31 .115 17 34 .107 18 36 .130 20 39 .120 21 
 23 .100 13 26 .095 14 29 .086 15 32 .082 16 35 .077 17 37 .099 19 40 .094 20 
 24 .057 12 27 .056 13 30 .057 14 33 .055 15 36 .055 16 38 .074 18 41 .071 19 
 25 .029 11 28 .032 12 31 .033 13 34 .036 14 37 .036 15 39 .053 17 42 .053 18 
 26 .014 10 29 .016 11 32 .019 12 35 .021 13 38 .024 14 40 .038 16 43 .038 17 
 27 0 9 30 .008 10 33 .010 11 36 .012 12 39 .014 13 41 .025 15 44 .027 16 
    31 0 9 34 .005 10 37 .006 11 40 .008 12 42 .017 14 45 .018 15 
          38 .003 10 41 .004 11 43 .010 13 46 .012 14 
                44 .006 12 47 .007 13 

n [smaller sample size] = 5 
  m=5 m=6 m=7 m=8 m=9 m=10 
 x p  x* x p x* x p x* x p x* x p x* x p x* 
 34 .111 21 37 .123 23 41 .101 24 44 .111 26 47 .120 28 51 .103 29 
 35 .075 20 38 .089 22 42 .074 23 45 .085 25 48 .095 27 52 .082 28 
 36 .048 19 39 .063 21 43 .053 22 46 .064 24 49 .073 26 53 .065 27 
 37 .028 18 40 .041 20 44 .037 21 47 .047 23 50 .056 25 54 .050 26 
 38 .016 17 41 .026 19 45 .024 20 48 .033 22 51 .041 24 55 .038 25 
 39 .008 16 42 .015 18 46 .015 19 49 .023 21 52 .030 23 56 .028 24 
 40 .004 15 43 .009 17 47 .009 18 50 .015 20 53 .021 22 57 .020 23 
    44 .004 18 48 .005 17 51 .009 19 54 .014 21 58 .014 22 
          52 .005 18 55 .009 20 59 .010 21 
             56 .006 19 60 .006 20 

n [smaller sample size] = 6 
   m=6 m=7 m=8 m=9 m=10 
 x p x* x p x* x p x* x p x* x p x* 
 47 .120 31 51 .117 33 55 .114 35 59 .112 37 63 .110 39 
 48 .090 30 52 .090 32 56 .091 34 60 .091 36 64 .090 38 
 49 .066 29 53 .069 31 57 .071 33 61 .072 35 65 .074 37 
 50 .047 28 54 .051 30 58 .054 32 62 .057 34 66 .059 36 
 51 .032 27 55 .037 29 59 .041 31 63 .044 33 67 .047 35 
 52 .021 26 56 .026 28 60 .030 30 64 .033 32 68 .036 34 
 53 .013 25 57 .017 27 61 .021 29 65 .025 31 69 .028 33 
 54 .008 24 58 .011 26 62 .015 28 66 .018 30 70 .021 32 
    59 .007 25 63 .010 27 67 .013 29 71 .016 31 
          68 .009 28 72 .011 30 
             73 .008 29 
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TABLE B4  continued 
 
 

 n [smaller sample size] = 7 n [smaller sample size] 
= 9 

 m=7 m=8 m=9 m=10  m=9 m=10 
 x p x* x p x* x p x* x p x*  x p x* x p x* 
 61 .159 44 65 .168 47 70 .150 49 74 .15752 
 62 .130 43 66 .140 46 71 .126 48 75 .13551 
 63 .104 42 67 .116 45 72 .105 47 76 .11550 
 64 .082 41 68 .095 44 73 .087 46 77 .09749 
 65 .064 40 69 .076 43 74 .071 45 78 .08148 
 66 .049 39 70 .060 42 75 .057 44 79 .06747 
 67 .036 38 71 .047 41 76 .045 43 80 .05446 
 68 .027 37 72 .036 40 77 .036 42 81 .04445 
 69 .019 36 73 .027 39 78 .027 41 82 .03544 
 70 .013 35 74 .020 38 79 .021 40 83 .02843 
 71 .009 34 75 .014 37 80 .016 39 84 .02242 
 72 .006 33 76 .010 36 81 .011 38 85 .01741 
    77 .007 35 82 .008 37 86 .01240 
       83 .006 36 87 .009 39 

 98 .149 73 104 .13976 
 99 .129 72 105 .12175 
 100 .111 71 106 .10674 
 101 .095 70 107 .09173 
 102 .081 69 108 .07872 
 103 .068 68 109 .06771 
 104 .057 67 110 .05670 
 105 .047 66 111 .04769 
 106 .039 65 112 .03968 
 107 .031 64 113 .03367 
 108 .025 63 114 .02766 
 109 .020 62 115 .02265 
 110 .016 61 116 .01764 
 111 .012 60 117 .01463 
 112 .009 59 118 .01162 
 113 .007 58 119 .00961 

 
 
 n [smaller sample size] = 8 n [smaller sample size] = 10 

 m=8 m=9 m=10  m=10 
 x p x* x p x* x p x* x p x* 
79 .13957 84 .138 60 89 .137 63 
80 .11756 85 .118 59 90 .118 62 
81 .09755 86 .100 58 91 .102 61 
82 .08054 87 .084 57 92 .086 60 
83 .06553 88 .069 56 93 .073 59 
84 .05252 89 .057 55 94 .061 58 
85 .04151 90 .046 54 95 .051 57 
86 .03250 91 .037 53 96 .042 56 
87 .02549 92 .030 52 97 .034 55 
88 .01948 93 .023 51 98 .027 54 
89 .01447 84 .018 50 99 .022 53 
90 .01046 95 .014 49 100 .017 52 
91 .00745 96 .010 48 101 .013 51 
92 .00544 97 .008 47 102 .010 50 

119 .157 91 
120 .140 90 
121 .124 89 
122 .109 88 
123 .095 87 
124 .083 86 
125 .072 85 
126 .062 84 
127 .053 83 
128 .045 82 
129 .038 81 
130 .032 80 
131 .026 79 
132 .022 78 
133 .018 77 
134 .014 76 
135 .012 75 
136 .009 74 
137 .007 73 
138 .006 72 
 

 
Table generated by D. Helsel
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Table B5.   -- Quantiles (p-values) for the sign test statistic S+ 
 

Quantiles for the sign test are identical to quantiles of the binomial distribution with 
percentile p=0.5.  The approximation given in chapter 6 and used by most statistical 
software packages can be used for n ≥ 20.  Statistics textbooks that contain a table 
of exact quantiles for the binomial distribution for sizes below 20 include Hollander 
and Wolfe (1999) and Zar (1999). 
 
An online table of exact quantiles for the binomial distribution can be found as of 
5/2002 at:   http://faculty.vassar.edu/lowry/binomial01.html 
 
An example of using this online table: 
Enter n (the number of data pairs) and p (=0.5).  An exact table will be printed.  P-
values are cumulative probabilities, or values of the cumulative distribution function 
(cdf).  For small values of the test statistic S+ (called k in the online table) – values 
below n/2, use the “Down” column to read off a one-sided p-value for the sign test.  
For S+  larger than n/2, use the “Up” column.   The example output below is for 
n=13.  A one-sided p-value for S+ = 4 (the probability of getting an S+ ≤4) is 0.133.  
The p-value for S+ = 9 (the probability of getting an S+ ≥9) also equals 0.133.  For a 
two-sided test, p = 0.266. 
 
     Cumulative Probability  
k  Exact Probability    Down     Up  
0 0.000122070313 0.000122070313 1.0 
1 0.001586914063 0.001708984375 0.999877929688 
2 0.009521484375 0.01123046875 0.998291015625 
3 0.034912109375 0.046142578125 0.98876953125 
4 0.087280273438 0.133422851563 0.953857421875 
5 0.157104492188 0.29052734375 0.866577148438 
6 0.20947265625 0.5   0.70947265625 
7 0.20947265625 0.70947265625 0.5 
8 0.157104492188 0.866577148438 0.29052734375 
9 0.087280273438 0.953857421875 0.133422851563 
10 0.034912109375 0.98876953125 0.046142578125 
11 0.009521484375 0.998291015625 0.01123046875 
12 0.001586914063 0.999877929688 0.001708984375 
13 0.000122070313 1.0  
 0.000122070313  

 
 



464 Statistical Methods in Water Resources 

 
Figure B1.  Two-sided critical region (p-values), shaded, 

for the sign test.  n=13, S+= 4 or 9.  
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Table B6  – Critical test statistic values for the signed-rank statistic W+ 

(from McCornack, 1965) 
 American Statistical Association.  Used with permission. 

 
 

The approximation given in chapter 6, used by most statistics software packages, can 

McCornack paper or a textbook such as Hollander and Wolfe (1999), even for large 
sample sizes. 
 
 
 [ reject H0: at one-sided α when [ reject H0: at one-sided α when  
 W+ ≤ table entry (small W) ] W+ ≥ table entry  (large W) ] 

 
 α-level α-level 
  n   .005 .010 .025 .050 n   .005 .010 .025 .050 
  5      0 5        15 
  6       0   2 6     21    19 
  7    0   2   3 7    28   26    25 
  8   0   1   3   5 8   36   35   33    31 
  9   1   3   5   8 9   44   42   40    37 
 10   3   5   8  10 10   52   50   47    45 
 11   5   7  10  13 11   61   59   56    53 
 12   7   9  13  17 12   71   69   65    61 
 13   9  12  17  21 13   82   79   74    70 
 14  12  15  21  25 14   93   90   84    80 
 15  15  19  25  30 15  105  101   95    90 
 16  19  23  29  35 16  117  113  107  101 
 17  23  27  34  41 17  130  126  119  112 
 18  27  32  40  47 18  144  139  131  124 
 19  32  37  46  53 19  158  153  144  137 
 20  37  43 52  60 20  173  167  158  150
  

   
 

 

be used for n > 15 and α ≥ 0.025.  For α < 0.025, see exact tables in the 
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Table B7 – Critical test statistic values for the Friedman statistic Xf 
(from Martin, Leblanc and Toan, 1993) 

 The Canadian Journal of Statistics.  Used with permission. 
 
The chi-square approximation given in chapter 7 is used by most statistics software 
packages. For comparing 3 to 5 groups of data with sample sizes (blocks) n <10 in 
each group, an exact table should be used. 

 
[reject H0: at α when Xf ≥ table entry] 

 
α-level 

  n     .005  .010  .025  .050  .10  
  3             6.00  6.00 
  4    8.00   8.00   8.00   6.50  6.00 
  5  10.00   8.40   7.60   6.40  5.20  
  6  10.33   9.00   8.33   7.00  5.33  
  7  10.29   8.86   7.71   7.14  5.43  
  8    9.75   9.00   7.75   6.25  5.25  
  9  10.67   8.67   8.00   6.22  5.56  
 10  10.40   9.60   7.80   6.20  5.00  

 
α-level 

  n     .005   .010  .025  .050  .10  
  2             6.00  6.00 
  3    9.00    9.00   8.20   7.40  6.60 
  4  10.20    9.60   8.40   7.80  6.30 
  5  10.92    9.96   8.76   7.80  6.36  
  6  11.40  10.20   8.80   7.60  6.40  
  7  11.40  10.37   9.00   7.80  6.43  
  8  11.85  10.50   9.00   7.65  6.30  
  9  12.07  10.87   9.13   7.80  6.47 
10  12.00  10.80   9.12   7.80  6.36 

 
α-level 

  n     .005  .010   .025  .050  .10  
  2        8.00    8.00   7.60  7.20   
  3  10.67  10.13    9.60   8.53  7.47 
  4  12.00  11.20    9.80   8.80  7.60 
  5  12.48  11.68  10.24   8.96  7.68  
  6  13.07  11.87  10.40   9.07  7.73  
  7  13.26  12.11  10.51   9.14  7.77  
  8  13.50  12.30  10.60   9.30  7.80  
  9  13.69  12.44  10.67   9.24  7.73 
10  13.84  12.48  10.72   9.28  7.76 

k = 3 groups

k = 4 groups

k = 5 groups
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Table B8 -- Quantiles (p-values) for Kendall's S statistic and tau correlation 
coefficient 

For N>10 use the approximation given in section 8.2.2 
 
 

One-sided p = Prob [S ≥ x] = Prob [S ≤ −x] 
 
 
  N = Number of data pairs    N = Number of data pairs  
 4 5 8 9 3 6 7 10 
    x        x      
 0 0.625 0.592 0.548 0.540 1 0.500 0.500 0.500 0.500 
 2 0.375 0.408 0.452 0.460 3 0.167 0.360 0.386 0.431 
 4 0.167 0.242 0.360 0.381 5  0.235 0.281 0.364 
 6 0.042 0.117 0.274 0.306 7  0.136 0.191 0.300 
 8  0.042 0.199 0.238 9  0.068 0.119 0.242 
 10  0.0083 0.138 0.179 11  0.028 0.068 0.190 
 12   0.089 0.130 13  0.0083 0.035 0.146 
 14   0.054 0.090 15  0.0014 0.015 0.108 
 16   0.031 0.060 17   0.0054 0.078 
 18   0.0156 0.038 19   0.0014 0.054 
 20   0.0071 0.022 21   0.0002 0.036 
 22   0.0028 0.0124 23    0.023 
 24   0.0009 0.0063 25    0.0143 
 26   0.0002 0.0029 27    0.0083 
 28   <0.0001 0.0012 29    0.0046 
 30    0.0004 31    0.0023 
 32    0.0001 33    0.0011 
 34    <0.0001 35    0.0005 
 36    <0.0001 37    0.0002  
      39    <0.0001 
      41    <0.0001 
      43    <0.0001 
      45    <0.0001 
 

Table generated by D. Helsel 



 
   Chapter cited 
 Data Set C1 Annual peak discharges for the Saddle River, NJ 2, 3 

 Data Set C2 Annual streamflows for the Conecuh River, AL 3, 6 

 Data Set C3 Daily streamflow for the Potomac River, Wash. D.C. 3 

 Data Set C4 Atrazine concentrations  6 

 Data Set C5 Subset of iron concentrations at low flow 7 

 Data Set C6 Complete set of iron concentrations 7 

 Data Set C7 Specific capacities of wells in Pennsylvania 7 

 Data Set C8 Corbicula on the Tennessee River 7 

 Data Set C9 TDS concentrations for the Cuyahoga River, Ohio 9 

 Data Set C10 Phosphorus transport, Illinois River at Marseilles 9 

 Data Set C11 Grain size and permeability of alluvial aquifers 9 

 Data Set C12 ROE and TDS data,  

Rappahannock R. near Fredericksburg, Virginia 10 

 Data Set C13 Streamflow data used for record extension 10 

 Data Set C14 Mean annual runoff and basin characteristics 11 

 Data Set C15 Urban total nitrogen loads 11 

 Data Set C16 Uranium and TDS in groundwaters 11 

 Data Set C17 Green River, Kentucky sediment transport data 12 

 Data Set C18 Maumee River, Ohio total P trends data 12 

 Data Set C19 Water levels, P-R-M system middle aquifer, NJ 12 

 Data Set C20 Factors affecting contamination from impoundments 15 

 
Data sets are available in both ASCII and MS Excel formats.  See the online location from which 
you obtained this book for the data files   HhappC.dat  and HhappC.xls .

Appendix C
Data Sets



 
Chapter  1 

1.1 For the well yield data: 
  a)  mean = 0.19 
  b)  trimmed mean = 0.05 
   c)  geometric mean = 0.04 
  d)  median = 0.04 
  e)  They differ because the data are skewed.  The estimates which are more 

robust are similar, while the mean is larger. 

1.2  a)  standard deviation = 0.31 
  b)  interquartile range = 0.36 
   c)  MAD = 0.04 
  d)  skew  =  2.07.  quartile skew = 0.83. 

Because the data are asymmetric, the median difference is small, but the IQR and 
standard deviation are not. 

1.3 mean = 1.64 std. dev. = 2.85 
 median = 0.80 IQR = 0.61 
  geometric mean = 0.04 MAD = 0.25 
 skew = 3.09 quartile skew = −0.10 

The largest observation is an outlier.  Though the skew appears to be strongly positive, 
and the standard deviation large, this is due only to the effect of that one point.  The 
majority of the data are not skewed, as shown by the more resistant quartile skew 
coefficient. 
a) assuming the outlying observation is accurate, representing some high-nitrogen 

location which is important to have sampled, the mean must be used to compute the 
mass of nitrogen falling per square mile.  It would probably be computed by 
weighting concentrations by the surface area represented by each environment.  The 
median would under-represent this mass loading. 

b) the median would be a better "typical" concentration, and the IQR a better "typical" 
variability, than the mean and standard deviation.  This is due to the strong effect of 
the one unusual point on these traditional measures. 

 

Appendix D
Answers to Selected Exercises
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Chapter 2 
 

 2.1 a) 
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c) 

   
 Either a cube root or logarithmic transform would increase symmetry. 
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2.2 a) 

 
Conc      

       0      200      400      600

 
 b) 

 

       0

     300

     600

Conc     
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Normal Scores
 

The data are strongly right-skewed.  A log transformation makes these data more 
symmetric. 

 
2.3 Q-Q plot.   
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 Boxplots: 
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The granodiorite shows higher chloride concentrations than does the quartz monzonite.  
This can be seen with any of the three graphs, but most easily with the boxplot.  From 
the Q-Q plot, the relationship does not look linear.   
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2.4 There appears to be no effect of the waste treatment plant. 
 
 
Chapter 3 

3.1 nonparametric: x' = 4  (α/2 = .0154).   Rl = 5,  Ru = 14. 
    0.4  ≤ Cl0.5 ≤  3.0   at α = 0.031.   
    This is as close to 0.05 as the table allows. 

parametric: Using the natural logs of the data,   
exp( )-0.045 - 2.11 •  1.63/18   ≤ GMx ≤  exp( )-0.045 + 2.11 •  1.63/18  . 
    0.51 ≤ GMx ≤  1.80. 
Either of intervals is reasonable.  The logs of the data still retain some skewness, so the 
nonparametric interval may be more realistic.  The parametric interval might be 
preferred to obtain an alpha of 0.05.  The choice would depend on whether the 
assumption of lognormality was believed. 

3.2 symmetric: 0.706 − 2.12 •  0.639/17   ≤  µ  ≤  0.706 + 2.12 •  0.639/17  
 0.30  ≤  µ  ≤  1.12 

 Point estimates: mean  = 0.705  (assuming normal distribution). 
    mean  = exp(−0.849+0.5•1.067)  

    = 0.73  (assuming a lognormal distribution). 
 As the logs of the data are more symmetric than the data prior to transformation, the 

lognormal (2nd) estimate is preferred. 

3.3 Parametric 95% prediction interval: 
0.19 − 2.20 •  0.0975 + (0.0975/12)     to    0.19 + 2.20 •  0.0975 + (0.0975/12)  
or −0.53  to  0.91 gallons/min/foot.  Includes 0.85, so same distribution. 

 Nonparametric 95% prediction interval: 
X[0.025•13]   to   X[0.975•13] X0.325 to X12.675 

 The sample size is too small to produce such a wide (95%) nonparametric prediction 
interval.  Therefore a parametric interval must be used.  However, the negative lower 
end of the parametric prediction interval indicates that a symmetric interval is not 
appropriate.  So an asymmetric interval resulting from taking logarithms should be used 
instead of the one above. 

3.4 The data look relatively symmetric, so no logs taken. 
 mean: 683 ± 126, or 557->809 α = .05.   
 median: Rl=6, Ru=15 524->894 α = .041. 
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3.5 The 90th percentile = 2445 cfs.  A one-sided 95% confidence interval for the 90th 
percentile (an upper confidence limit to insure that the intake does not go dry) is found 
using the large-sample approximation of equation 3.17:   

   Ru =  365•0.1 + z[0.95] • 365•0.1•(0.9)   + 0.5 
 =  36.5 + 1.645•5.73 +0.5  =  46.4 

The 46th ranked point is the upper CI, or 2700 cfs. 

Chapter 4 

4.1 For the before-1969 data, PPCC r=0.986.  For the after-1969 data, PPCC r=0.971.  
Critical values of r are 0.948 and 0.929, respectively.  Therefore normality cannot be 
rejected for either period at α = 0.05. 

 
4.2 For the arsenic data, PPCC r=0.844.  The critical r* from Appendix table B3 is  

r*=0.959.  Therefore reject normality.  For log-transforms of the data, PPCC  
r=0.973.  Normality of the transformed data is not rejected.   

Chapter 5 

5.1 The p-value remains the same. 

5.2 Given that we wish to test for a change in concentration, but the direction of the change 
is not specified in the problem, this should be a two-sided test.  If it had stated we were 
looking for an increase, or a decrease, the test would have been a one-sided test. 

5.3 a. Quantiles are the 12 "after" data, and 12 quantiles computed from the 19 "before" 
data : 

 i j "after" "before" 
 1 1.34 1350.00  1222.13 
 2 2.92 2260.00  1715.25 
 3 4.49 2350.00  1739.84 
 4 6.06 2870.00  1900.82 
 5 7.64 3060.00  2506.23 
 6 9.21 3140.00  2614.92 
 7 10.79 3180.00  2717.21 
 8 12.36 3430.00  2873.61 
 9 13.93 3630.00  3375.24 
 10 15.51 3780.00  3591.15 
 11 17.08 3890.00  3922.29 
 12 18.66 5290.00  4617.37 
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The relationship appears additive.  The Hodges-Lehmann estimate (median of all 
possible after−before differences) = 480 cfs. 

 
b. After regulation, the reservoir appears to be filling.  Any test for change in flow 

should omit data during the transition period of 1969-1970.  Plots of time series are 
always a good idea.  They increase the investigator's understanding of the data.  Low 
flows after regulation are not as low as those before.  This produces the pattern seen 
in the Q-Q plot of the low quantiles being lower after regulation. while the upper 
quantiles appear the same, as shown by the drift closer to the x=y line for the higher 
values. 

    2500

    5000

  1952   1960   1968   1976

o
o

o
o oo o

oo o
o oo o o oo

oo o
o ooo o oo o

o

o
o

After Regulationo Before Regulation

A
nn

ua
l P

ea
k 

D
is

ch
ar

ge
 (

cf
s)

 
c. With 1969 and 70 included, Wrs =  273.5  p=0.22.  The after flows are not 

significantly different.  With 1969 and 70 excluded, Wrs =  243.5  p=0.06.  The after 
flows are close to being significantly different -- more data after regulation is needed. 
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5.4  Exact test   
 X Y R(Y) R(X) 
 1   1 
  1.5 2 
 2   3 
  2.5 4 
 3   5 
  3.5 6 
 4   7 
  4.5 8 
  5.5 9 
  7.0 10 
  10.0 11 
  20.0 12 
  40.0  13 
  100.0 14 
 n = 4  m = 10    Wrs = ΣRx = 16 

From table B4, Prob(Wrs ≤ 16) = .027.  The two-sided exact p-value = 0.054 

Large-sample approximation 

The mean is µW = 
n•(N+1)

2   = 
4•15

2   = 30 

W =  
n•m•(N+1)

12   = 7.0711  

 Zrs = 
 +1/2

sW
   = −1.909 

Using linear interpolation between −1.9110 and −1.8957 in a table of the standard 
normal distribution gives the one-tail probability of 0.028.  So the two-sided approximate 
p-value is 0.056. 
 
t-test on the ranks 
Replacing variable values by ranks gives 
 x`   = 4  Sx = 2.582  S2x = 6.667  n = 4 
 y`   = 8.9 Sy = 3.928 S2y = 15.429 m = 10 
 
The pooled variance is : 

 S2 = 
3S2x + 9S2y 

12    = 13.2386 

 S = 3.639 

W

The standard deviation is given by σ

16 - µ

jkmonson

jkmonson

jkmonson

jkmonson
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 t = 
x −y 

S (1/n +1/ m)
= −2.27610 

 
Linear interpolation for a student's t with 12 degrees of freedom gives  

 .975 + 
(2.27610 - 2.1788)
(2.6810 - 2.1788)   •.015 = .97791  1.0 − .97791 = .022 

The two-sided rank transform p-value is .044. 
 

 Summary 
 Approach p-value 
 Rank-Sum Exact 0.054 
 Rank-Sum Approx. 0.056 
 t test on ranks 0.044 

 
 To compute ˆ ∆ , the (n•m)=40 differences (Xi−Yj =Dj) are: 

(Y1)    0.5 1.5 2.5  3.5 4.5 6 9 19 39 99 
(Y2)    −0.5 0.5 1.5  2.5 3.5 5 8 18 38 98 
(Y3)    −1.5 −0.5 0.5  1.5 2.5  4 7 17 37 97 
(Y4)    −2.5 −1.5 −0.5 0.5 1.5 3 6 16 36 96 
 
 D̂  = median of 40 Dj's (Drank 20 + Drank 21 )/2 = 3.75 

 
5.5  Yields with fracturing  Yields without 

 rcrit = .932, accept normality rcrit =.928, reject normality 
 

Because one of the groups is non-normal, the rank-sum test is performed. 
Wrs = ΣRwithout = 121.5.     The one-sided p-value from the large-sample approximation  
p= 0.032.   Reject equality.  The yields from fractured rocks are higher. 

5.6 The test statistic changes very little (Wrs = 123), indicating that most information 
contained in the data below detection limit is extracted using ranks.  Results are the same 
(one-sided p-value = 0.039.  Reject equality).  A t-test could not be used without 
improperly substituting some contrived values for less-thans which might alter the 
conclusions.  

 

Chapter 6 

6.1 The sign test is computed on all data after 683 cfs is subtracted.  S+ = 11.  From table 
B5, reject if S+ ≥ 14 (one-sided test).  So do not reject.  p > 0.25. 
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6.2 c is not a matched pair. 

6.3 a. H0:  µ (South Fork) − µ (North Fork) = 0.     
 H1:  µ (South Fork) − µ (North Fork) ≠ 0. 
 
b. A boxplot of the differences shows no outliers, but the median is low.  Conductance 

data are usually not skewed, and the PPCC r=0.941, with normality not rejected.  So 
a t-test on the differences is computed (parametric). 

diffs   
    -100      -50        0

 
 
c. t =  −4.24     p = 0.002     Reject H0. 
 
d. Along with the boxplot above, a scatterplot shows that the South Fork is higher only 

once: 
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e. The mean difference is −64.7. 

6.4 Because of the data below the reporting limit, the sign test is performed on the 
differences Sept−June.  The one-sided p-value = 0.002.  Sept atrazine concentrations are 
significantly larger than June concs before application. 

6.5 For the t-test, t=1.07 with a one-sided p-value of 0.15.  The t-test cannot reject equality 
of means because one large outlier in the data produces violations of the assumptions of 
normality and equal variance. 
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Chapter 7 
 
7.1 As a log-transformed variable, pH often closely follows a normal distribution.  See the 

following boxplots: 

     6.0      7.0      8.0      9.0
pH

BP-1

BP-2

BP-9

 
pH for three piezometer groups (from Robertson et al., 1984) 

  
The PPCC for the three groups (0.955 for BP-1, 0.971 for BP-2, and 0.946 for BP-9) 
cannot disprove this assumption.  Therefore ANOVA will be used to test the similarity of 
the three groups. 
 
 Anova Table: 
 Source   df   SS    MS  F p-value 
 Piez Gp 2 7.07 3.54 9.57 0.002 
 Error 15 5.54 0. 37   
 Total 17 12.61 
 
The groups are declared different.  Statistics for each are: 
 GP          N      Mean      Std. Dev.       Pooled Std. Dev = 0.608 
 BP-1        6         7.65          0.596   
 BP-2        6         6.68          0.279   
 BP-9        6         8.20          0.822  
 
A Tukey's test on the data is then computed to determine which groups are different.  The 
least significant range for Tukey's test is 
 LSR =  q(0.95, 2, 15)•  0.37/6     = 3.01•0.248 
  =  0.75 
Any group mean pH which differs by more than 0.75 is significantly different by the 
Tukey's multiple comparison test.  Therefore two piezometer groups are contaminated, 
significantly higher than the uncontaminated BP-2 group: 
  BP-9  ≅  BP-1  >  BP-2 
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Since the sample sizes are small (n=6 for each group) one might prefer a Kruskal-Wallis 
test to protect against any hidden non-normality: 
 
 GP        N      MEDIAN              Rj`       
BP-1       6             7.60                 11.3   
BP-2       6             6.75                   3.6    
BP-9       6             8.00                 13.6  
Overall Median = 9.5 
  
K = 11.59 χ20.95,(2) = 5.99. Reject H0, with p = 0.003. 
ANOVA and Kruskal-Wallis tests give identical results. 

7.2 Boxplots of the data indicate skewness.  Therefore the Kruskal-Wallis test is computed:
 K = 7.24 Corrected for ties, K = 7.31. p = 0.027 
Reject that all groups have the same median chloride concentration. 

     0.0      2.5      5.0      7.5     10.0

Chloride Conc

granodiorite

qtz monzonite

ephemeral

 

The medians are ranked as   granodiorite > qtz monzonite > ephemeral.  Individual
K-W tests are computed for adjacent pairs at α = 0.05: 
granodiorite ≅  qtz monzonite  (p = 0.086) 
qtz monzonite ≅  ephemeral  (p = 0.27). So: 

 
 granodiorite   qtz monzonite  ephemeral 
     

   

 

7.3 Median polish for the data of strata 1:  
 Winter Spring Summer Fall Year median 
1969 25.25 11.25 10.25 10.75 8.75 
1970 16.5 2.5 1.5 2 0.00 
1971 15 1 0 0.5 −1.50 

Season median 14.25 0.25 −0.75 −0.25 2.25 

jkmonson

jkmonson
`
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Corbicula densities were 14 units higher in winter than in other seasons, and 9 to 10 
units higher in 1969 than 1970 or 1971.  Those effects dominated all others.  This is 
shown by a plot of the two-way polished medians: 

     0.0

     8.0

    16.0

    24.0

Winter Spring     Summer    Fall

1969 
1970 
1971

 

The residuals are skewed, as shown in a boxplot: 

residuals  

     -10        0       10       20       30

 
However, a residuals plot of cell residuals versus the comparison value shows outliers, but an 
overall slope of zero, stating that no power transformation will improve the situation very much. 
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7.4 Due to the outliers noted above, ranks of the Corbicula data were used to test the effects 
of season and year on the number of organisms.   
Source df SS MS F p-value 
Year 2 1064.7 532.33 13.78 0.000 
Season 3 1300.7 433.57 11.23 0.000 
Year*Season 6 560.8  93.46  2.42 0.057 
Error  24 926.8 38.62 
Total 35 3853.0 
 
A two-way ANOVA on the ranks indicates that both season and year are significant 
influences on the density of Corbicula, and that there is no interaction.  This is illustrated 
well by the plot of polished medians above. 

7.5 Not answered. 
 

Chapter 8 
 
8.1 The plot of uranium versus total dissolved solids looks like it could be nonlinear near the 

0 TDS boundary.  So Spearman's rho was computed, and  
rho = 0.72 with tr = 4.75 and p<0.001. 

     500

    1000

uranium 

TDS     
     0.0      3.5      7.0     10.5

 

8.2 Pearson's r = 0.637 with tr = 3.79 and p<0.001.  Kendall's tau = 0.53 with p<0.001.  
The suggestion of nonlinearity would favor either rho or tau, though the nonlinearity is 
not serious in this case. 

 
8.3 Not answered. 
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Chapter 9 

9.1 A residuals plot for the untransformed variables shows strong curvature.  A log-log 
regression gives an acceptable plot, with one outlier not influencing the line: 

log(Yield) = 6.74 + 1.39•log(Grain Size) t= 8.14   p < 0.001 

9.2 The overall mean yield will be the average of estimates of mean yield for the four wells 
from the regression equation.  Applying the 1/2 s2 correction factor to obtain the mean 
yield rather than the median, the estimated mean yields are: 
46.104   120.830   316.669   556.380 with overall mean = 260 gal/day/ft2. 

9.3 Here are some possible transformations, including the log.  Can logQ be improved on? 
 explanatory variable R2  
 Q 40.8% 
 Q 0.5 51.1% 
 log Q  57.3% 
 Q -0.25 57.4% 
 Q -0.5 55.4% 
 Q -1 47.9% 
 
 1/(1+0.00001Q) 41.8% 
 1/(1+0.0001Q) 47.6% 
 1/(1+0.001Q) 58.5% 
 1/(1+0.01Q) 52.4% 
 1/(1+0.1Q) 48.5% 
 

There are perhaps two other good candidate explanatory variables on this list,  
Q-0.25, and 1/(1+0.001Q).  Neither improve significantly over logQ, based on R2 or on 
residuals plots.  A residuals plot and probability plot of residuals for the hyperbolic 
transformation having b=0.001 are below. 

 
 When b=0.00001 or smaller, the model is virtually identical to the linear model TDS = 

b0+b1Q  [a power transformation with θ =1].  When b=0.1 or larger, the model is virtually 
identical to the inverse model TDS = b0+b1(1/Q)  [a power transformation with θ =−1].  
Values of b in between these provide functions similar to moving down the ladder of 
powers from θ =1 to θ =−1.  The advantage of using the hyperbolic function is its 
interpretability as a mixing of ground and surface waters (Johnson et al., 1969). 

9.4 If the objective is to predict LOAD, then that (or its transform) should be the dependent 
variable. The regression statistics (especially PRESS) will then tell how well the predictions 
will do.  If ln(C) is used as the dependent variable, the standard error s = 0.3394, exactly 
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the same as in the equation for ln(LOAD), but R2=17.3 % rather than 67.9 % for 
ln(LOAD).  The t statistic on β1 is −4.43, also significant but not as much as when y = 
ln(LOAD).  In other words, the error of the ln(C) values is exactly the same magnitude as 
the errors of ln(LOAD).  The percent variation explained drops from 67.9 % to 17.3 %, 
the difference being the strong effect of Q on variation in LOAD.  Note the changes in 
regression coefficients.  The previous model was ln(LOAD) = 0.789 + 0.761 ln(Q).  This 
one is ln(C) = −.194 − .239 ln(Q).  The intercept decreased by an amount equal to ln(2.7) 
(the log of the unit conversion coefficient) and the slope decreased by exactly 1 because Q 
is removed from both sides.  The standard errors of the coefficients are both unchanged. 
 
If LOAD were computed by using the regression for ln(C) and then multiplying that result 
by 2.7 Q, exactly the same estimates would result as when using the equation for 
ln(LOAD).  This is true regardless of which estimation method is employed (median, 
MLE, or Smearing), and will always be true for log-log regression estimation.  The moral 
of the story is:  if your boss thinks that you shouldn't use ln(LOAD) as the dependent 
variable and you can't convince him or her otherwise, go ahead and predict ln(C), and 
from that ln(LOAD), and you will still get the results you got doing it the simple way. 

 

Chapter 10 

10.1   X   Y   Slopes  
 1 10 30  10   15  13  9.2 
 2 40 −10  7.5  7.33  4 
 3 30 25  16  8.67 
 4  55 7  0.5 
 5 62 −6 
 6  56 
Ranked slopes:  −10,  −6,  0.5,  4,  7,  7.33,  7.55,  8.67,  9.2,  10,  13,  15,  16,  25,  30 

 
a) Median slope  =  8.67 = Theil slope estimator b1

^   
 Median X   = 3.5 
 Median Y   = 47.5 
 S =  P −M   = 13 − 2  = 11 

                          

b) τ  = 
S

n(n-1)/2    = 
11

6•5/2   = 0.73 

                          
c) intercept b0

^   = Ymed − b1
^  • Xmed = 47.5 − 8.67• 3.5  = 17.17 

 Y = 17.17 + 8.67• X   is the Kendall-Theil equation 
 (Y = 10.07 + 9.17• X   is the OLS equation for the same data) 
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d) from table B8, for S=11 and n=6, two-sided p-value = 2•0.028 = 0.056. 

10.2   X   Y   Slopes  
 1 10 30  10  15  47.5  9.2 
 2 40 −10 7.5  53.33  4 
 3 30 25  85  8.67 
 4 55 145  0.5 
 5 200 −144 
 6 56 
Ranked slopes  −144, −10, 0.5, 4, 7.5, 8.67, 9.2, 10, 15, 25, 30, 47.5, 53.33, 85, 145 

 
a) Median slope = 10 = Theil slope estimator b1

^   
 Median X  = 3.5 
 Median Y  = 47.5 

 
b) S and τ are unchanged 

                          
c) b0

^   =  47.5 − 10 • 3.5   = 12.5 
 Y = 12.5 + 10 • X  the Kendall-Theil equation is similar to ex. 10.1. 
 (Y = −8.33 + 21 • X  the OLS slope has changed a lot from ex. 10.1) 

                          
d) the p-value is unchanged. 

                          
e)  for a 95% confidence interval, the closest entry in table B8 to α/2=0.025 is 

p=0.028 for Xu=11.  From eqs. 10.3 and 10.4,  

 Ru =  
(15 + 11)

2    =  13 for N=15 and Xu=11. 

The rank Rl of the pairwise slope corresponding to the lower confidence limit is 

 Rl =  
(15 - 11)

2   +1 =  3. 

So an α = 0.054 confidence limit for ˆ β 
1
is the interval between the 3rd and 13th ranked 

pairwise slope (the 3rd slope in from either end), or 
 0.5 ≤ ˆ β 

1
≤ 53.3 . 

10.3 The unweighted OLS regression equation is 
 Y = − 8.3 + 21.0•X   t = 1.41 p = 0.23 
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The residuals are then divided by 6•(MAD), where the MAD is the median of the absolute 
values of the residuals.  Bisquare weights are computed for each data point: 

    pt #                 1                2               3                4                5              6 
     weight         0.999         0.996         0.935          0.954         0.179        0.631 

                          
A first weighted least squares is then computed: 
 Y = 3.1 + 13.1 X  t = 1.49 p = 0.21 
Bisquare weights are again computed for each data point, using residuals from the first 
WLS: 
    pt #                1                2               3                 4                5               6 
     weight        0.984         0.952         0.938          1.000         0.000         0.746 
 
A second WLS is then computed: 
 Y = 10.4 + 8.80 X  t = 2.73 p = 0.07 
Though the slope has diminished from the OLS line, the significance has greatly 
increased due to the lower weight of the outlier.  Note the similarity between this WLS 
and the Kendall's robust line.  A residuals plot shows that the WLS line fits most of the 
data much better than with OLS.  The outlier's influence on the slope has diminished, 
and its residual remains large. 
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Some object: "Isn't this WLS line the same as throwing away the outlier -- it has a weight 
of zero?"  The difference is that the outlier was determined to be downweighted to zero 
by the data itself, not an arbitrary decision by the data analyst.  Weighted least squares 
also allows outliers to have partial weights, not simply a zero or one weight as with 
discarding the outlier.  So WLS is far less arbitrary and far more consistent in its 
assignment of weights to all data points than is throwing away outliers. 

10.4  r2 = 0.76  

    -6.0

    -3.0

Lowering   

Years
   

     0.0      6.0     12.0     18.0     24.0

Smooth

OLS

 
OLS does not follow the data as well as the smooth because the data are nonlinear. 

 
10.5   Plotting the 20 years of joint data shows that curvature and heteroscedasticity exist, and 

transformation is required before regression.  Thus the natural logs of both are taken.  A 
linear relation results, as shown in the following plot. 

Lowering = − 2.07 − 0.167 •Years 
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Regression between the 20 year joint record at the two stations is: 
 Ln(Short) = 1.095 + 0.507•Ln(Base) t = 6.00 p <0.001 R2 = 0.67 
 
Using this equation and the 30 additional years of record at Base, 30 years of simulated 
flows at Short are generated.  Now the LOC is used to generate estimates of the "Short" 
30-year record.  Summary statistics for the 20 years of joint Ln(Base) and Ln(Short) 
records are as follows: 
 n Mean Stdev Median P25 P75 
Ln(Short) 20 2.319 0.524 2.160 1.862 2.850 
Ln(Base) 20 2.414 0.844 2.190 1.802 3.200 
 
From equation 10.10,  
 Yi = Y`   + sign[r]•

sy
sx  •(Xi − X ),    or 

 Ln(Short) = 2.319 + (.524/.844) • (Ln(Base) − 2.414) 
 = 0.820 + .621 • Ln(Base) 
 
Note how the slope and intercept for LOC differ from the regression coefficients.  
Summary statistics for the estimated flows at "Short" by the two methods are compared 
to the true 30-year record from Appendix C13 in the following table. 
 n Mean Stdev Median P25 P75 
OLS est. 30 2.2087 0.4975 2.0228 1.7731 2.6249 
LOC est. 30 2.184 0.609  1.956  1.651  2.694  
true values 30 2.079 0.613  1.930  1.630  2.290  
The standard deviation for the regression estimate is too small, as expected. 
 

jkmonson
= `

jkmonson

jkmonson
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Boxplots are presented below for three groups: the 30-year estimates using regression 
and LOC combined with the 20-year record at Short, and the actual 50-year record.  
LOC comes closer to correctly estimating the lowest and highest flows.  The regression 
estimates are too low for high flows, and too high for low flows.  They "regress" toward 

2
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*

* ** O O

       0       12       24       36       48
Flow at Short

OLS est

LOC est
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10.6 Not answered. 
 

Chapter 11 
 

11.1 The full multiple regression model contains strong multi-collinearity.  The VIFs among 
the four percentage variables are huge: 

the mean more than the actual data because the standard deviation of the estimates is 
too small, as R  <1.   
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LOGTN = − 1.3 + 0.596 LOGDA + 0.346 LOGIMP + 0.0314 MMJTEMP  
− 0.0494 MSRAIN + 0.040 PRES + 0.035 PNON + 0.037 PCOMM + 
0.024 PIND 

 
   n = 42 s = 0.61 R2 = 0.59 
Parameter Estimate Std.Err(β) t-ratio  p  VIF 
Intercept β0 −1.28 24.60 −0.05 0.959 
Slopes    βk 
LOGDA 0.596 0.121 4.94 0.000 1.8 
LOGIMP 0.346 0.228 1.52 0.138 3.8 
MMJTEMP 0.031 0.019 1.65 0.107 10.1 
MSRAIN −0.049 0.021 −2.32 0.026 9.1 
PRES 0.040 0.245 0.16 0.873 9227.2 
PNON 0.035 0.246 0.14 0.888 3062.2 
PCOMM 0.037 0.245 0.15 0.882 8311.4 
PIND 0.024 0.246 0.10 0.922 2026.2 

Table 11.9   Regression statistics and VIF's for Exercise 11.1 

To determine why the multi-collinearity is so strong, the correlation matrix is computed. 

    LOG MMJ MS     

 LOGTN LOGDA IMP TEMP RAIN PRES PNON PCOMM 
LOGDA 0.565 
LOGIMP  0.058 -0.382 
MMJTEMP -0.205 -0.188  0.094 
MSRAIN -0.259 -0.083  0.018  0.915 
PRES 0.294  0.210 -0.246  0.040  0.003 
PNON -0.042  0.319 -0.639  0.066  0.065 -0.321 
PCOMM  -0.218 -0.441  0.589 -0.027  0.039 -0.747 -0.206 
PIND -0.131  0.060  0.114 -0.111 -0.164 -0.226 -0.124 -0.180 

Surprisingly, the percentage terms do not have large pair-wise correlation coefficients.  
Instead, they are strongly related in that the four of them add to 100%, except for 
rounding error.  This is why the VIFs are so large.  Therefore at least one of them should 
be dropped.  The variable with the smallest partial F (PIND) could be chosen.  This 
brings the VIF down from over 9000 to 10, still large.  In order to save much time the 
Cp and PRESS statistics can be computed for all possible models.  The results below 
show that the best 5-variable model, containing LOGDA, LOGIMP, MMJTEMP, 
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MSRAIN, and PIND, is the best in terms of prediction errors (PRESS) and model 
bias/standard error (Cp).  VIFs are below 10 (R2 < 0.9) and so are acceptable. 

 X: Variable is in the model 
                                           M 

                                         L M M 

                                       L O J S     P 

                                       O G T R P P C P 

                                       G I E A R N O I 

 # of             .                    D M M I E O M N 

 Vars   R-sq   PRESS   C-p   Max VIF   A P P N S N M D 

 

    1   32.0   22.9   17.0     ----    X 

    1    8.6   30.0   35.8     ----            X 

    2   40.7   21.2   11.9      1.2    X X 

    2   37.5   22.2   14.5      1.1    X         X 

    3   46.4   20.2    9.3      1.2    X X     X 

    3   45.2   19.8   10.3      1.2    X X           X 

    4   51.2   18.9    7.4      1.2    X X   X       X 

    4   50.9   19.8    7.7      1.2    X X   X X 

  * 5   57.0   17.8    4.7      6.8    X X X X       X 

    5   56.2   18.0    5.4      7.5    X   X X X   X 

    6   59.1   18.2    5.1      7.1    X X X X X     X 

    6   58.6   18.9    5.4      7.1    X X X X   X   X 

    7   59.1   19.4    7.0     10.0    X X X X X X X 

    7   59.1   19.4    7.0     13.2    X X X X X   X X 

    8   59.1   20.1    9.0   9227      X X X X X X X X 

A residuals plot from the minimum PRESS and Cp model shows no hint of curvature or 
increasing variance.  Therefore this model is preferred. 
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Residuals plot for the regression of Exercise 11.1 

 
11.2  First compare those models which have equal numbers of parameters and eliminate the 

ones with higher SSE. 
  Compare 4 to 7 ,     eliminate 4 
  Compare 3 to 6 ,     eliminate 3 
  Compare 2 to 5 ,     eliminate 2 
  Compare 6 to 8 ,     eliminate 6 
 

Now, for the remaining models (1, 5, 7, 8, 9. 10) perform F tests between pairs of nested 
models.  The order in which to proceed is arbitrary. 
Compare   F  dfnumdfdenom Fcrit conclusion  
Models  1 to 5 11.18 1 123 3.9 reject H0,eliminate model 1 
Models  5 to 7 0.28 2 121 3.1 do not reject eliminate model 7 
Models  5 to 8 1.39 1 122 3.9 do not reject eliminate model 8 
Models  5 to 9 0.77 3 120 2.68 do not reject eliminate model 9 
Models  5 to 10 0.88 5 118 2.29 do not reject eliminate model 10 
Model 5 is the preferred model. 
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Another possible approach is to use either PRESS or Mallows Cp. 
 Model  p   s2  Cp 

 1 3 0.5636 14.29 
 2 4  0.5350 8.37 
 3 5 0.5343 9.17 
 4 6 0.5359 10.51 
 5 4 0.5183 4.41 
 6 5 0.5207 5.98 
 7 6 0.5245 7.84 
 8 5 0.5166 5.00 
 9 7 0.5212  8.06 
 10 9 0.5208 9.95 

The results are interpreted as:  the transport curve is quadratic with a shift in intercept 
for the winter months.  Only two seasons (not three) can be distinguished.  The slope of 
the curve does not change with season. 

11.3 Not answered. 

11.4 Not answered. 
 

Chapter 12 

12.1 Regression 
  load = 25,250 − 12.6 year  r2 = 10.6% 
      (t)                (1.53)       (−1.50)  two-sided p value = 0.134 
Multiple regression 
  load = 28,152 − 14.4 year + 0.696 q r2 = 88.3% 
      (t)               (4.69)        (−4.60)      (10.91) two-sided p value ≅ 0.0001 
Mann-Kendall 
  load = 11,800 − 5.8 year  two-sided p value = 0.415 
Mann-Kendall on Residuals 
Regression model is load = −110 + 0.681 q r2  = 74.5% 
         (t)            (−1.24)     (7.44) 
 
Kendall fit:  residual = 28,250 − 14.4 year two-sided p value = 0.0001 
therefore   load  = −110 + 0.681q + residual 
    = −110 + 0.681q + 28,250 − 14.4 year 
    =  28,140 − 14.4 year + 0.681q 
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12.2  Winter: P = 16,  M = 34,  S = -18 
1 tie of 3,  2 ties of 2 
Var[S] =  159.33 
Z  = −1.347 
p = 0.18 very little evidence of downtrend in winter lead 

 
 Spring:  P = 27,  M = 38,  S = −11 

3 ties of 2,  1 tie of 5 
Var[S] = 249 
Z  = 0.633 
p  = 0.53 no evidence of downtrend in spring lead 

 
 Summer:  P= 16,  M = 33,  S = −17 

1 tie of 4 
Var[S] = 156.33 
Z  = −1.28 
p  = 0.20 very little evidence of downtrend in summer lead 

 
 Fall:  P = 11,  M = 37,  S = −26 

1 tie of 4,  1 tie of 2 
Var[S] = 155.33 
Z = 2.005 
p = 0.045 fairly strong evidence of downtrend in fall lead 

 
 Seasonal Kendall:   S = −72 

VAR[S] =  720 
Z = −2.646 
p (2-sided)= 0.008 

 
Thus, even though the evidence from no individual season was highly conclusive, the 
data from all seasons taken together provides highly conclusive evidence of a down-
trend in lead. 

12.3 Maumee River Trends in Total Phosphorus 
 
12.3.1 Parametric analysis first:   LOAD vs TIME 

Simple linear regression:  LOAD = 444 − 0.221 TIME 
  t = -0.42 p = 0.673 
  s = 20.59       R-sq = 0.1%      R-sq(adj) = 0.0% 

 



Appendix D   Answers 495 

A boxplot of the residuals shows them to be terribly skewed.  A transformation is 
required.  Try logarithms.  Then the regression equation is:   
ln(LOAD) = 117 − 0.0592 TIME 
  t = −1.32      p = 0.189 
  s = 1.770 R-sq = 1.3% R-sq(adj) = 0.6% 

 

There is a fairly normal distribution of residuals, so a test based on regression seems 
legitimate.   Very weak evidence of trend --  (two-sided) p-value of  0.189.   But are there 
strong flow and/or seasonal effects?  A plot of the residuals versus log of streamflow 
(LQ) shows a strong dependence on flow.  Removing this should greatly enhance the 
power to detect any trend which is present. 

 
         -                                               *   * 
      2.4+                                                  *   * 
         - 
 RESID   -                                            **   * 
         -                                            * 
         -                                        2*  2 
      1.2+                                       26 *** 
         -                                  * *2* 
         -                            * * 22 2 *** 
         -                            * ** * 2* 
         -                    **   *2* 2 * 
      0.0+                      ***3***2 
         -                 * *   *2* **    2 
         -               *  33*2 *2* 
         -           * * ** 2   2     * 
         -             2 43*      * 
     -1.2+      **2**4**  * 
         -     *2  2 **      * 
         -       * 
           --------+---------+---------+---------+---------+--------
lnQ 
                -1.2       0.0       1.2       2.4       3.6 

 

Boxplots of residuals by month also show a strong seasonal cycle, high in the winter & 
spring, low in summer.  The best model we could find includes time, ln(Q), ln(Q)2, and 
sine and cosine of 2πT: 

 LLOAD = 83.3 − 0.0425 TIME + 1.08 lnQ + 0.0679 ln(Q)2 − 0.0519 SIN + 0.141 COS 
 

 Predictor       Coef       Stdev    t-ratio        p 

 Constant       83.32       22.06       3.78    0.000 

 TIME        -0.04250     0.01115      -3.81    0.000 

 lnQ          1.08175     0.04947      21.87    0.000 

 ln(Q)2       0.06789     0.01868       3.63    0.000 

 SIN         -0.05190     0.06252      -0.83    0.408 

 COS          0.14058     0.05441       2.58    0.011 

 s = 0.4398      R-sq = 94.1%     R-sq(adj) = 93.9% 



496 Statistical Methods in Water Resources 

 

This is interpreted as a strong evidence of downtrend, with a p-value  <.001  The slope 
(in log units) =  −0.0425 per year.   All coefficients are significant at α = 0.05 except for 
sine(2πT).  The sine must either be left in, or both it and the cosine taken out.  To test 
whether together they are significant, an F test is performed.  The model without these 
terms, with the standard error s = 0.449, is: 
  LLOAD = 85.1 − 0.0434 TIME + 1.06 LQ + 0.0748 LQSQ 

 

 Predictor       Coef       Stdev    t-ratio        p 

 Constant       85.09       22.51       3.78    0.000 

 TIME        -0.04340     0.01138      -3.81    0.000 

 lnQ          1.05921     0.04518      23.44    0.000 

 ln(Q)2       0.07481     0.01865       4.01    0.000 

 s = 0.4490      R-sq = 93.7%     R-sq(adj) = 93.6% 

 

So the F test to compare these two models is: 

 F = 
(26.01 - 24.57) / 2.0

 0.193    = 3.73 

Comparing to an F distribution with 2 and 127 degrees of freedom, the two-sided p-
value is 0.027.  Therefore reject the simpler model in favor of including the seasonal sine 
and cosine terms.   
 
To predict estimates of load for the two times and two flow conditions above, natural 
logs of these values are input to the regression equation.  The third column below 
reports the predicted logs of Load from the regression equation. 
  lnQ    Time   Predicted lnL    Bias-Corrected L 

  2.4   1972.5      2.3356          11.3852 

  0.0   1972.5     -0.6516           0.574136 

  2.4   1986.5      1.7406           6.27963 

  0.0   1986.5     -1.2467           0.316640 

 

These predicitons must be transformed and corrected for bias.  Using the Ferguson 
(MLE) bias correction, 0.5•s2 = 0.5•(0.4398)2  =  0.097 .  So the bias correction equals 
exp(0.097), or about 10%.  The four predicted total phosphorus loads are given above in 
the fourth column. 
  

Therefore the percent change at high flow over the 14-year time period is: 
  (6.2763 − 11.3852) / 11.3852  =  −0.448732 
The change in percent per year is   
 −0.448732 • 100 / 14 =  −3.205 . That is a −3.2% change in total P per year. 
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The same analysis at lower flow over the 14 years is: 
 (0.31664 − 0.574136) / 0.574136 = −0.4485, the same amount as at high flow. 
Re-expressing the slope estimate in original units as a percent change, the average 
change equals −4.2% per year: 
 100 • [exp (−0.0425) − 1.0]  =  −4.16096 

 

12.3.2 The nonparametric approach 
The seasonal-Kendall test on the original observations, using 12 seasons (months):   Tau 
= −0.06 with a p-value of 0.3835. 

log(Load) =  0.505  − 0.046 •time ,  
where time = 0 at the begining of the first year of the record (typically a water year), and 
time is in units of years.  
 
Residuals from a regression of log(Load) versus logQ and logQ2 removes the effect of 
flow: 
 log(Load) = −0.745 + 1.06 logQ + 0.0758 logQ2 

 The S-K test on the regression residuals: tau = −0.25 with p = 0.0002 
and  log(Load) =  0.312  − 0.048 •time  
 
So, if flow is not first removed, the significant trend would be missed.  Both the 
Seasonal Kendall on the residuals and multiple regression give a highly significant p-
value.  The S-K slope is 4.8% rather than 4.16% because of the effect of the low 
residuals during 1972-1977. 

Residuals plot from regression with logQ and logQ2 
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TIME 
          1972.5    1975.0    1977.5    1980.0    1982.5    1985.0 
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12.4 Not answered. 

12.5 Nat answered. 
 

Chapter 13 

13.1 Not answered 

13.2 Because there is only one reporting limit, Kendall's tau can easily be computed for this 
data: tau =  −0.40  with p = 0.023.  There is a significant decrease in TPT 
concentrations with depth. 

13.3 Estimates of the four descriptive statistics for each of 5 multiple-threshold methods (see 
Helsel and Cohn, 1988) are: 
 Method MEAN ST.DEV. MEDIAN IQR 
ZE (substitute zero)  12.36 75.48 0.00 1.10 
HA (substitute 1/2 dl) 13.91 75.28 1.10 3.30 
DL (substitute the dl) 15.45 75.19 1.30 4.10 
MR (prob plot regression) 12.57 75.44 0.29 1.54 
MM (lognormal MLE) 8.30 61.52 0.34 1.62 
 
Because of the outlier at 560 µg/L the data have more skewness than a lognormal 
distribution, and methods which assume a lognormal distribution for all the data (MM) 
would not be expected to estimate moment statistics well.  It is not surprising therefore 
that the MLE method produces moment estimates dissimilar to the other methods.  We 
generally select the MR moment estimates and the MM quantile estimates (those printed 
in bold), due to the results of Helsel and Cohn (1988). 

 

Chapter 14 

14.1 a) Contingency table 
Expected values  Eij 

     Trend in C1- (1974-81, α=0.1) 
 ∆ road salt appl. Down No trend Up Totals 

Down 5.44 23.84 16.71 46 
No change 9.82 43.02 30.15 83 

Up 13.73 60.13 42.14 116 
 Totals 29 127 89 245 
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 Table of   
(0-E)2

E     

     Trend in C1- (1974-81, α=0.1) 
 ∆ road salt appl. Down No trend Up Totals 

Down 0.04 2.79 3.56  
No change 1.78 0.02 0.88  

Up 1.01 1.39 3.93  
 
  χ2 = 15.39  df = 4  p = 0.004 
 The results indicate that the category of chloride trends is dependent on the category of 

salt applications, with a p-value of 0.004.  Where increases in road salt occurred, there 
are more up trends and fewer down trends than would be expected from the marginal 
distributions of up trends and down trends.  Where decreases in road salt occurred, there 
are fewer up trends than would be expected.  

 
 b)  Kendall's tau 
 P = no. pluses  =  5(44+25+51+55) + 32(25+55) + 14(51+55) + 44(55) = 7339 
 M = no. minuses = 32(14+10) + 9(14+44+10+51) + 44(10) + 25(10+51) = 3804 
 S = 7339 - 3804  =  3535. 

 τ b = 
 3535

(2452 - (462+ 832+ 1162)) (2452 - (292+ 1272+ 892))
2

  

  =  3535 /18164 =  0.19 
 
 To test for significance,  

 σS ≅  
1

9
* 1− .193 + .343 + .473( )( )* 1− .123 + .523 + .363( )( )  

  =  
(0.85 *0.81*2453)

9
 =  1061 

 
 and so  ZS = 3534/ 1061  = 3.33 and two-sided p= 0.0008.   
 The two variables are significantly and positively related. 
 
 c)  Kendall's tau is more appropriate because 
 1.  It includes the information that the variables are ordinal into the test.  The p-value for 

Kendall's tau is lower than that for the contingency table, reflecting this additional 
information. 

2.  It provides a measure of the direction of association τ b.  Since τ  is positive, the 
trends in Cl- increase with increasing trends in road salt application. 

 



500 Statistical Methods in Water Resources 

14.2 Based on the tables below, there is a significant association between location of the well 
and the probability of detecting volatiles.  The more protected downdip wells indeed 
have less chance of being contaminated than do the outcrop wells. 

  
Expected values  Eij 

 Location Non-detects Detect VOC Totals 
Downdip 91.92 23.08 115 
Outcrop 143.08 35.92 179 

 Totals 235 59 294 
 

 Table of   
(0-E)2

E     

 Location Non-detects Detect VOC  
Downdip 2.16 8.59  
Outcrop  1.39 5.52  

  χ2 =  17.647   df = 1  p = <0.0001 
 
14.3 To test for association, Kendall's tau-b is used because both time and concentration 

variables are ordinal.  Computations are shown in the boxes below. 
 TBT Concentration 

 Year ≤ 200 > 200 Ai ai 
1988 2 7 9 0.18 
1989 9 13 22 0.43 
1990 10 10 20 0.39 

 Cj 21 30 51 
 cj 0.41 0.59 1.0 
 

The number of pluses P = 2(13+10) + 9(10)  = 136 
The number of minuses M = 7(9+10) + 13(10) = 263 
So  S = 136 − 263 = −127. 
 
To compute the denominator of τb, SSa = 92 + 222 + 202 =  965. 
 SSc = 212 + 302  =  1341. 

and  τ b = 
-127

(512 - 965) (512 - 1341)
2

  =  
 -127
717.9  =  −0.18. 

 
From equation 14.9 the approximate value of σS is 
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 σS ≅  
1
9 • (1-(0.183+0.433+0.393))•(1-(0.413+0.593))•513  

  ≅ 
(0.86)•(0.73)•513

9   =  9253  =  96.2 

 ZS  ≅  
-127+1

96.2   =  −1.31 

and from a table of the normal distribution the one-sided p-value is  p = 0.095.  
Therefore Ho: τ b = 0 is not rejected at α=0.05, but is for α = 0.10.   Thus there is weak 
evidence of a downtrend in TBT concentrations based on a split at 200 ng/L.  Stronger 
evidence could be obtained by collecting data for subsequent years, or by obtaining 
better resolution of the data (the original data reported concentration values rather than 
a split at 200 ng/L). 

 

Chapter 15 

15.1 Logistic regression for the full model with four explanatory variables gives: 

 Variable Parameter Standard 
 Name Estimate Error Wald's  t p-value 
 Constant −13.20539 3.55770 −3.71 0.0002 
 Thick 0.51527 0.15093 3.41 0.0004 
 Yields 0.42909 0.27484 1.56 0.0607 
 GW Qual 0.03035 0.32460 0.09 0.4642 
 Hazard 1.08952 0.29860 3.65 0.0002 
 
with a likelihood ratio lro = 49.70  and p<0.000 as compared to the intercept-only 
model.  However, two of the variables (Yields and GW Qual) have insignificant t-
statistics.  In the following model they are dropped, and lro recomputed: 
 
 Variable Parameter Standard 
 Name Estimate Error Wald's  t p-value 
 Constant −10.89039 2.43434 −4.47 <0.0001 
 Thick 0.46358 0.13575 3.41 0.0004 
 Hazard 1.07401 0.28301 3.80 0.0001 
 
with a likelihood ratio lro = 52.54  and p<0.000 as compared to the intercept-only 
model.  The partial likelihood ratio to test whether the first model is significantly better 
than the simpler second model is: 
 lr = lro(simple) − lro(complex) = 52.54 − 49.70 = 2.84 
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which for a chi-square distribution with 2 degrees of freedom gives: 
 p = 0.242. 
Therefore the two additional variables (Yields and GW Qual) do not appreciably add to 
the explanatory power of the model. 
 



3-dimensional rotation, 60 
7-day 10-year low flow, 83 
additive relation, 42, 142 

checking for, 186 
adjacent values, 26 
adjusted R2, 399 
adjusted variable Kendall test, 336 
adjusted variable plots, 301 
AIC, 399 
Akaike's information criteria, 399 
aligned-ranks, 192 
alpha level, 107 
alpha level, 68 
alternate hypothesis, 104 
analysis of variance, 158 

ANOVA table, 168 
assumptions of, 166 
multi-factor, 170 
on the ranks, 163 
on within-block ranks, 191 
one-factor, 164 
two-factor ANOVA table, 174 
two-way rank tests, 170 
unbalanced design, 179 

angles, judgment of on graphs, 417 
ANOVA.    see analysis of variance 
area, judgment of on graphs, 416 
assumption of independence, 252 
asymmetric confidence intervals, 69 

for the mean, 76 
attained significance level, 108 
autocorrelation.   see serial correlation 
 
 

bar chart, 62, 206 
grouped, 422 
stacked, 421 

bias correction, 258 
bisquare weight function, 284 
block effect, 196 
blocking, 181, 197 
Blom plotting position, 24 
boxplots, 24, 39, 423 

side-by-side, 129 
boxplots, 128, 207 
bulging rule, 230 
business graphics, 412 
categorical variables 

Kruskal-Wallis test for, 382 
categories, 19 
censored data, 3, 124, 128 

guidelines for use, 373 
in trend tests, 353 
nonparametric tests, 366 
parametric tests, 366 
regression, 370 

characteristics of data, 2 
chemometrics, 372 
coefficient of determination, 228 
coefficient of skewness, 11 
Cohen's method, 353, 360 
color, use of in graphs, 412 
comparing among distributions, 35 
comparison value, 186 
compliance with water quality standards, 83 
confidence intervals, 66 

for percentiles, 82 
for percentiles (nonparametric), 84 

Index
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confidence intervals, cont. 
for percentiles (parametric), 90 
for regression line, 242 
for skewed data, 69 
for the mean, 75 
for the median, 70 

confidence level, 68 
constant variance assumption, 255 
contingency tables, 378 

for censored data, 372 
continuity correction, 122, 141, 147 
control chart, 93 
Cook's D, 250 
correction for ties 

Kendall's tau;, 215 
rank-sum test, 123 

correlation, 209 
monotonic, 210 

correlation coefficient, 210 
linear, 218 
nonparametric, 212 

critical values 
lower, 113 
upper, 113 

cumulative distribution function, 23 
cumulative line graph, 419 
cumulative logits, 406 
Cunnane plotting position, 22, 24, 114 
degrees of freedom, 160, 167, 297, 310, 380 
detection limit, 3, 128 

guidelines for use of data, 373 
more than one, 354 
trend tests for data below, 353 

DFFITS, 250 
difference between group means, 135 

confidence interval for, 135 
differences between groups 

estimators, 132 
discriminant function analysis, 402 
dot and line plot, 36, 38 

dot charts, 423 
Duncan's multiple range test, 199, 200 
Durbin-Watson statistic, 253 
efficiency 

asymptotic relative, 102 
Kendall vs. OLS, 268 

equal variance, 124 
error rate, 107, 110 

overall, 199 
pairwise, 199 

error sum of squares, 167, 196 
exogenous variables in trend tests, 330 
expected value, 224 
explanatory variable, 99, 158, 222 
extension of records, 278 
factor, 158 
factorial ANOVA, 170 

assumptions of, 173 
far-out values, 26 
fixed effects, 180 
flood-frequency, 24 
flow-duration, 24 
framed rectangle, 421 
Friedman test, 170, 187, 192 

large sample approximation, 188 
F-test, 168, 174 
geometric mean, 7, 73 

estimation for censored data, 361 
geometric mean functional regression, 276 
graphical analysis, 19 
graphical comparisons, 35 
graphical methods, 128 
graphics, 205 
graphs 

pie chart, 416 
angle and slope, 417 
boxplots, 423 
cumulative line graphs, 419 
dot charts, 423 
framed rectangles, 421 
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graphs, cont. 
grouped bar charts, 422 
hidden scale breaks, 428 
judgments of length, 420 
misleading, 424 
overlapping histograms, 429 
precision of, 411 
stacked bar charts, 422 
use of color, 412 
use of numbers on, 427 
use of perspective, 424 
use of shading, 413 

Gringorten plotting position, 24 
Gumbel distribution, 90 
harmonic mean, 199 
Hazen plotting position, 24 
heavy tails, 2 
heteroscedasticity, 124, 230, 255, 280 
hinges, 25 
histograms, 206, 429 
histograms, 19, 36 
Hodges-Lehmann estimator, 132, 155 

confidence interval for, 133, 155 
for step trend, 349 

homoscedasticity, 51 
homoscedasticity, 13 
hypothesis tests, 97, 109 

choice of, 101 
classification, 99 
classification of, 106 
exact, 103 
with censored data, 365 

independent groups, 117 
inequality of variance, 124 
influence, 4, 248, 250 
interaction, 172 
intercept, 226 

confidence interval for, 240 
deletion of, 240 
nonparametric, 268 

interquartile range, 9, 24 
interval estimates, 66 
invariance to rotation, 280 
IQR, 9 
iteratively weighted least squares, 283 
joint probability, 379 
Kendall's nonparametric line;, 370 
Kendall's nonparametric line; .i.Sen slope 
estimate; .regression 

nonparametric;, 266 
Kendall's S statistic, 272 
Kendall's tau, 326 

for categorical variables., 386 
for censored data, 372 
large sample approximation;, 213 
tie correction;, 215 

Kendall's tau; .i.tau;, 212 
Kendall's tau-b;)., 386 
kite diagram, 54 
Kruskal-Wallis test, 158, 159 

for categorical variables, 382 
large sample approximation, 160 
rank transform approximation, 163 

ladder of powers, 14, 15, 31, 119, 230 
large sample approximation, 103, 121 
least normal squares, 279 
least significant range, 198 
least squares, 228 
length, judgment of on graphs, 420 
leverage, 248 
likelihood ratio, 397 
likelihood-R2, 398 
line of organic correlation, 276 
linear regression.    see regression 
linearity, 13 
linearity, 46 
LOC, 276 
log likelihood, 397 
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logistic regression, 395 
for censored data, 371 
for multiple responses, 403 

logistic transformation, 396 
logit, 396 
loglinear models, 390 
lognormal, 2 
lognormal distribution, 73 
LOWESS, 47, 288 

use in trend tests, 335 
LOWESS, 325 
MAD, 10, 284 
Mann-Kendall trend test, 326 

with censored data, 354 
Mann-Whitney test, 118 
MARA, 192 
marginal probability, 379 
mass transport, 258 
matched-pair tests 

graphical presentation of, 152 
maximum-likelihood, 360 

tobit regression, 370 
mean 

asymmetric confidence interval for, 76 
confidence interval for, 75 

mean difference, 157 
mean square error, 228 
mean squares, 167, 174 
measures of location, 3 
median, 6 

confidence interval for, 70 
test for differences in, 118, 159 

Median Aligned-Ranks ANOVA, 192 
median difference, 154 
median polish, 182 
mixed effects, 181 
MLE, 360 

tobit regression, 370 
mode, 7 
monotonic correlation, 210 

monotonic trend, 327 
MOVE, 276 
moving average, 286 
moving medians, 286 
multiple comparison test 

graphical display of, 208 
multiple comparison tests, 197 

for categorical variables, 385 
nonparametric, 198, 203 

multiple regression, 237 
use as a trend test, 337 

multiplicative relation, 43 
multiply-censored data, 353 

hypothesis tests for, 368 
nonparametric tests for, 368 

multivariate graphical methods, 52 
nominal response variables, 406 
non-normality, 92, 124 
nonparametric interval estimate, 70 
nonparametric prediction intervals, 77 
nonparametric test for percentiles, 86 
nonparametric tests, 101 

comparison to parametric, 102 
for censored data, 366 

normal distribution, 2, 26, 31, 113 
normal probability plot, 24, 114 
normal quantiles, 28, 114 
normal scores, 114 
normality 

of test statistics, 121 
test of, 102, 113, 166 

normality assumption, 150 
null hypothesis, 104, 107, 108 

not rejecting, 109 
rejecting, 109 

odds ratio, 396 
OLS, 222 
one-sided p-value, 112 
one-sided tests, 105, 109 
ordinal variables, 386 
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ordinary least squares, 222 
outliers, 12, 92 

tests for, 92 
outliers, 2, 31, 38, 127, 250 
outside values, 26 
overall error rate, 199 
paired observations, 138 
paired t-test, 148 

assumptions of, 148 
computation, 149 

pairwise comparisons, 199 
pairwise error rate, 199 
parametric c. i. for the median, 73 
parametric prediction intervals, 80 
parametric tests, 100 

comparison with nonparametric, 102 
with censored data, 365, 366 

partial likelihood ratio, 398 
Pearson Type III distribution,, 90 
Pearson's r, 218 
percent exceedance, 30 
percentiles 

confidence interval for, 83 
parametric tests for, 91 
water quality, 83 

percentiles, 9 
perceptual tasks for interpreting graphs, 412 
perspective, use of in graphs, 424 
pie chart, 62 
pie charts, 416 
Piper diagram, 58, 59 
Piper smooth, 59 
plotting position, 22, 23, 30, 114 
point estimates, 66 
polar smooth, 48, 292 
population, 2 
positive skewness, 10 
power, 95, 100, 107 

lack of, 124, 127 
loss of, 102, 150 

power, 102 
power transformation 

effect on paired t-test, 151 
effect on rank-sum test, 118 
effect on signed-rank test, 144 

power transformations, 177 
avoiding, 265 
effect on t-test, 128 
invariance to, 327 
WLS as an alternative, 282 

PPCC test, 113 
precision of graphs, 411 
prediction interval, 66, 243 

asymmetric, 81 
nonparametric, 77, 79, 81, 244 
one-sided, 79 
parametric, 80, 81 
symmetric, 81 
two-sided, 78 

prediction residual, 249 
PRESS statistic, 249 
principal components analysis, 59 
probability paper, 29 
probability plot, 27, 31, 35, 41 
probability plot correlation coefficient, 35 
probability plot correlation coefficient, 113 
profile plot, 53 
p-value, 108, 111 

one-sided, 113 
two-sided, 112, 113 

Q-Q plot, 42, 43, 128, 129 
construction, 45 

quality control, 93 
quantile plot, 22, 206 
quantile-quantile plot, 129 
quantiles, 22, 83 
quantiles, 42 
quartile, 9 
quartile skew coefficient, 11 
r squared, 228 
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random effects, 180 
randomized complete block design, 182, 187 
rank transform test, 194 
rank transformation test, 123, 170, 203 
ranks, 7 
ranks, 104 
rank-sum test, 110, 118 

an alternative to logistic regression, 402 
as a test for trend, 349 

rating curve, 258 
record extension, 278 
regression, 221 

for censored data, 369 
regression 

as a test for trend, 328 
assumptions, 224 
confidence interval on mean response, 
242 
diagnosing problems, 232 
guide to model selection, 263, 316 
hypothesis testing, 238 
non-normal residuals, 268 
nonparametric, 266 
normality assumption, 236 
robust, 269, 283 
validation of equation, 249 

regression diagnostics, 238, 246 
rejection region, 113 
reliability, 66 
replicates, 194 
replication 

ANOVA without, 194 
residuals, 31, 226 

prediction, 249 
standardized, 249 
studentized, 249 
testing for normality, 236 
use in trend tests, 332 

residuals plot, 187, 232 
trend, 234 

resistant, 6 
response variable, 99, 222 
rho, 217 
risk tolerance, 108 
RMSE, 358 
robust, 11 
robust regression, 269 
root mean squared error, 358 
sample, 2 
sample size, estimating, 95 
sampling design, 95 
Satterthwaite's approximation, 126 
scale breaks, 428 
scatterplot matrix, 61 
scatterplots, 46, 423 
schematic plot, 26 
seasonal Kendall test, 339 
seasonal rank-sum test, 350 
seasonal variation, 234 

differences among seasons, 345 
graphics for display of, 344 
modeling, 338 
use of periodic functions, 342 

Sen slope estimate, 266 
serial correlation, 252 

remedies, 254 
shading on graphs, 413 
Shapiro-Wilk test, 115 
sign test, 138, 187 

computation, 138 
large sample approximation, 141 

signed-rank test, 142, 192 
large sample approximation, 146 
rank transform approximation, 148 

significance level, 107, 110 
simple boxplot, 25 
skew, 10 
skewed data, 124 
skewness, 2, 31, 69 
skewness, 38, 40, 127 
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slope, 226 
confidence interval for, 240 
judgment of on graphs, 417 
test of significance, 238 

smearing estimator, 259 
smooth, 46, 47, 48 

lower, 292 
LOWESS, 286 
middle, 286 
outer, 293 
upper, 292 

smooth, 47 
smoothing, 286 
smoothness factor, 289 
spatial trend, 326 
Spearman's rho, 217 
spread, 8, 51 
stacked bar chart, 62 
standard deviation, 9, 36 
standard error, 36, 228 
standardized residual, 249 
star diagram, 54, 58 
statistical maps, 413 
statistical tables, 113 
stem and leaf diagram, 20 
step trend, 349 

when to test for, 351 
Stiff diagram, 53, 58 
studentized range, 198 
student's t statistic, 75 
sum of squares, 196 
summary statistics, 10 

for censored data, 358 
with multiple reporting limits, 364 

sums of squares, 173 
symmetric confidence intervals, 68, 75 
symmetry, 13 

assumption of, 151 
table of test statistic quantiles, 110 
tables, deficiencies of, 410 

tails of the distribution, 10, 31 
target population, 2 
tau, 212 
t-distribution 

noncentral, 90 
test statistic, 108 
Theil slope estimate 

computation, 266 
confidence interval for, 273 
efficiency, 268 
for trends, 330 
with censored data, 354 

tie correction 
for tests with censored data, 354 

tobit regression, 366, 370 
tolerance intervals, 83 
tolerance probability, 96 
transformation bias 

in regression, 258 
of MLE, 360 

transformations, 31, 103, 166, 177, 255 
consequences in regression, 256 

transformations, 13, 230 
t-ratio, 232 
trend 

exponential change, 347 
trend analysis 

including exogenous variables, 330 
nonparametric, 335 
step trends, 349 
use of transformations, 347 
with censored data, 353 

trend slope, 330 
seasonal, 341 

trilinear diagram, 57 
trimmed mean, 7 
truncated boxplot, 26 
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t-test, 103, 124 
as a test for trend, 349 
assumptions of, 124 
computation of, 125 
for multiple comparisons, 199 
on ranks, 127 
problems with, 124 
violation of assumptions, 127 

Tukey's multiple comparison test, 199, 201 
two-factor ANOVA, 193, 194 
two-sided tests, 105, 111 
Type I error, 107 
Type II error, 107 

unequal sample sizes, 179 
unequal variances, 126 
variance, 9 

confidence interval for, 240 
violation of test assumptions, 150 
Wald's t-statistic;, 398 
Weibull plotting position, 24 
weight function, 288 
weighted least squares, 281 
whisker, 25 
WLS, 281    
 

 




